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RETARDATION OF A CRACK WITH CONNECTIONS

BETWEEN THE FACES USING AN INDUCED

THERMOELASTIC STRESS FIELD

UDC 539.375R. I. Kadiev and V. M. Mirsalimov

This paper considers local temperature variations near the tip of a crack in the presence of regions
in which the crack faces interact. It is assumed that these regions are adjacent to the crack tip and
are comparable in size to the crack size. The problem of local temperature variations consists of
delay or retardation of crack growth. For a crack with connections between the crack faces subjected
to external tensile loads, an induced thermoelastic stress field, and the stresses at the connections
preventing crack opening, the boundary-value problem of the equilibrium of the crack reduces to a
system of nonlinear singular integrodifferential equations with a Cauchy kernel. The normal and
tangential stresses at the connections are found by solving this system of equations. The stress
intensity factors are calculated. The energy characteristics of cracks with tip regions are considered.
The limiting equilibrium condition for cracks with tip regions is formulated using the criterion of
limiting stretching of the connections.

Key words: cracks, thermoelastic stress field.

Formulation of the Problem. Designing reliable emergency response systems is a vital problem, especially
as far as unique facilities and human safety are concerned. One of the effective means for retarding crack growth
are temperature and thermoelastic fields [1, 2]. In fracture mechanics, the problem of crack healing is of great
importance. The results of [3] show that the effect of a heat source reduces the strain of an extended plane in a
direction perpendicular to the crack, and, hence, the stress intensity factor in the neighborhood of the crack tip
decreases.

Let us consider an unbounded elastic plane with one rectilinear crack of length 2l at the coordinate origin.
We assume the presence of regions in which the crack faces interact so that this interaction retards crack opening.
It is assumed that these regions are adjacent to the crack tip and their sizes are comparable to the crack length.

Outside the tip regions, the crack faces are free of external loads. At infinity, the plane is subjected to
uniform extension along the ordinate σ∞y = σ0 (Fig. 1).

The crack propagation is retarded by producing a zone of compressing stresses on the crack propagation
path using a heat source which heats a region S to a temperature T0.

The following assumptions are adopted:
(a) all thermoelastic characteristics of the material of the plane do not depend on temperature;
(b) the material of the plane is a homogeneous and isotropic body.
It is assumed that at the time t = 0, an arbitrary region S on the crack propagation path in the plane is

heated instantaneously to a constant temperature T = T0. The remaining part of the plane has zero temperature
at the initial time.
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Fig. 1. Computational diagram of the problem.

We distinguish crack regions of length d1 and d2 (tip regions) adjacent to its tip in which the crack faces
interact. The interaction of the crack faces in the tip regions is modeled by introducing connections (adhesive forces)
between crack faces with a specified deformation diagram. The physical nature of such connections and the sizes of
the tip regions in which the crack faces interact depend on the type of material.

The tip regions are small compared to the remaining part of the plane. Therefore, they can be mentally
removed and replaced by cuts whose faces interact with each under a certain law corresponding to the action of the
removed material.

Generally, the action of external power and thermal loads on the plate gives rise to normal [qy(x)] and
tangential [qxy(x)] stresses at the connections between the crack faces. Therefore, the crack faces in the tip regions
are subjected to the normal and shear stresses qy(x) and qxy(x), respectively. These stresses are not known
beforehand and are to be determined during the solution of the boundary-value problem of fracture mechanics.

The boundary conditions of the problem are written as

σy − iτxy = 0 at y = 0, λ1 < x < λ2,

σy − iτxy = qy − iqxy at y = 0, −l 6 x 6 λ1 and λ2 6 x 6 l,

where the stress state is given by

σy = σy1 + σy0 , σx = σx1 + σx0 , τxy = τxy1 + τxy0 .

Here σx0 , σy0 , τxy0 is the solution of the thermoelastic problem for the plane without a crack.
Solution of the Boundary-Value Problem. To obtain the stresses σx0 , σy0 , and τxy0 , we solve the

thermoelastic problem for the solid plane. We first find the temperature distribution in the plane. For this, the
following boundary-value problem of heat-conduction theory is solved:

∂T

∂t
= a∆T,

T =
{

T0, x, y ∈ S,

0, x, y /∈ S.

Here a is the temperature diffusivity of the plane material and ∆ is the Laplacian.
For definiteness, we assume that the regions S1 and S2 heated from the side of each crack tip by the heat

source are rectangles with sides 2xk and 2yk (k = 1, 2) and the center Ok of the rectangle Sk (k = 1, 2) has the
coordinates (Lk, bk) (see Fig. 1).

The temperature distribution has the form

T (x, y, t) = T1(x, y, t) + T2(x, y, t),

Tk(x, y, t) =
T0
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erf (z) =
2√
π

z∫
0

exp (−u2) du.

The perturbed temperature field caused by the presence of the crack is ignored in determining the tempera-
ture field to simplify the problem. In particular, if the regions Sk (k = 1, 2) are arranged symmetrically about the
abscissa, the perturbed temperature field is absent.

The main relations of the formulated problem must be supplemented by an equation that relates the crack
opening displacements and the strain at the connections. Without loss of generality, this equation can be written
as follows [4, 5]:

(v+ − v−)− i(u+ − u−) = Cy(x, σ)qy(x)− iCx(x, σ)qxy(x). (1)

Here the functions Cy(x, σ) and Cx(x, σ) can be treated as the effective compliances of the connections that depend

on their tension and σ =
√

q2
y + q2

xy is the stress vector magnitude at the connections. For constant values of Cy

and Cx, we have a linear deformation law in (1). Generally, the deformation law is nonlinear and specified.
The stress–strain state for the infinite plane in the plane problem with a cut along the abscissa is described

by two analytical functions Φ(z) and Ω(z) [6]:

σx + σy = 2[Φ(z) + Φ(z)],

σy − iτxy = Φ(z) + Ω(z̄) + (z − z̄)Φ′(z),

2µ
∂

∂x
(u + iv) = k0Φ(z)− Φ(z)− zΦ′(z)−Ψ(z),

Ω(z) = Φ̄(z) + zΦ̄′(z) + Ψ̄(z).

Here k0 = 3− 4ν for plane strains, k0 = (3− ν)/(1 + ν) for plane stresses, and ν is Poisson’s constant of the plane
material.

To determine the functions Φ(z) and Ω(z), we have the linear conjugation problem [6]

[Φ(x) + Ω(x)]+ + [Φ(x) + Ω(x)]− = 2p(x); (2)

[Φ(x)− Ω(x)]+ − [Φ(x)− Ω(x)]− = 0, (3)

where −l 6 x 6 l (x is the affix of the points of the crack contour with the tip zones),

p(x) =
{

0 on the free crack faces;
qy − iqxy on the faces of the crack-tip zones.

The solution of the boundary-value problem (2), (3) is sought in the form

Φ(z) = Φ0(z) + Φ1(z), Ω(z) = Ω0(z) + Ω1(z).

Here the potentials Φ0(z) and Ω0(z) describe the thermoelastic state of the solid plane under the action of the heat
source.

The complex potentials Φ1(z) and Ω1(z) are determined from the boundary conditions (2) and (3). To find
the functions Φ1(z) and Ω1(z), we write boundary conditions (2) and (3) in the form

[Φ1(x) + Ω1(x)]+ + [Φ1(x) + Ω1(x)]− = 2p(x) + 2q0(x); (4)

[Φ1(x)− Ω1(x)]+ − [Φ1(x)− Ω1(x)]− = 0, (5)

where 2q0(x) = −[Φ0(x) + Ω0(x)]+ − [Φ0(x) + Ω0(x)]− = σy0(x)− iτxy0 .
As z →∞, we have Φ0(z) → 0, Φ(z) → Φ1(z) → σ0/4, Ω0(z) → 0, and Ω(z) → Ω1(z) → 3σ0/4.
Solving the thermoelastic problem for the solid plane, we obtain

2q0(x, 0) = σy0(x, 0)− iτxy0(x, 0).

Here σy0 =
n∑

k=1

σy0k
and τxy0 =

n∑
k=1

τxy0k
, where n = 2 and
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σy0k
= −µ(1 + ν)αT0
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;

A(x, y) =
{

1, x, y ∈ Sk,

0, x, y /∈ Sk;

µ is the shear modulus of the plane material, and α is the linear temperature-expansion coefficient.
The general solutions of the boundary-value problems (4) and (5) have the following form [6]:

Φ1(z)− Ω1(z) = −σ0/2,

Φ1(z) + Ω1(z) =
1

πi
√

z2 − l2

l∫
−l

√
t2 − l2 [p(t) + q0(t)]

t− z
dt +

2F (z)√
z2 − l2

.

Here F (z) = c0z + c1, and by the function (z2 − l2)−1/2 is meant the branch that at large |z| has the form

(z2 − l2)−1/2 =
1
z

+
l3

2z3
+ . . . .

Finally, for the complex potentials Φ1(z) and Ω1(z), we have

Φ1(z) =
1

2πi
√

z2 − l2

l∫
−l

√
t2 − l2 [p(t) + q0(t)] dt

t− z
+

F (z)√
z2 − l2

− σ0

4
; (6)

Ω1(z) =
1

2πi
√

z2 − l2

l∫
−l

√
t2 − l2 [p(t) + q0(t)] dt

t− z
+

F (z)√
z2 − l2

+
σ0

4
.

To determine the coefficient c0, it is necessary to expand the function (6) in a series in the powers of z in
the neighborhood of the point |z| → ∞ and to compare this expansion with the expression

Φ1(z) = σ0/4 + O(1/z2).

As a result, we obtain c0 = σ0/2. The constant c1 is determined from the condition of uniqueness of the displace-
ments [6]:

l∫
−l

[Φ+
1 (x)− Φ−1 (x)] dx = 0.
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To finally determine the complex potentials Φ1(z) and Ω1(z), it is necessary to find the stresses qy and qxy

at the connections. Using the relations 2µ∂(u + iv)/∂x = k0Φ(z) − Ω(z̄) − (z − z̄)Φ′(z) and the boundary values
of the functions Φ1(z), Ω1(z), and F (z), we obtain the following equality on the segment |x| 6 l:

Φ+
1 (x)− Φ−1 (x) =

2µ

1 + k0

[ ∂

∂x
(u+ − u−) + i

∂

∂x
(v+ − v−)

]
. (7)

Using the Sokhotsky–Plemelj formulas [7] and formula (6), we obtain

Φ+
1 (x)− Φ−1 (x) = − i

π
√

l2 − x2

[ l∫
−l

√
l2 − t2 [p(t) + q0(t)] dt

t− x
+ 2(c0x + c1)

]
. (8)

Substituting expression (8) into the left side of Eq. (7), using relation (1), and performing some transfor-
mations, we obtain the following system of nonlinear integrodifferential equations for the unknown functions qy(x)
and qxy(x):

− 1
π
√

l2 − x2

[ l∫
−l

√
l2 − t2

t− x
qy(t) dt +

l∫
−l

√
l2 − t2

t− x
σy0(t) dt + 2(c0x + c1)

]
=

2µ

1 + k0

∂

∂x
(Cy(x, σ)qy(x)); (9)

− 1
π
√

l2 − x2

[ l∫
−l

√
l2 − t2

t− x
qxy(t) dt +

l∫
−l

√
l2 − t2

t− x
τxy0(t) dt

]
=

2µ

1 + k0

∂

∂x
(Cy(x, σ)qxy(x)). (10)

We recall that

I1 =

l∫
−l

√
l2 − t2

t− x
qy(t) dt =

λ1∫
−l

√
l2 − t2

t− x
qy(t) dt +

l∫
λ2

√
l2 − t2

t− x
qy(t) dt,

I2 =

l∫
−l

√
l2 − t2

t− x
qxy(t) dt =

λ1∫
−l

√
l2 − t2

t− x
qxy(t) dt +

l∫
λ2

√
l2 − t2

t− x
qxy(t) dt.

Numerical Solution and Analysis. The formulated problem, as might be expected, is split into two
independent problems: Eq. (9) for mode I cracks and Eq. 10 for mode II cracks. Each of these equations is a
nonlinear integrodifferential equation with a Cauchy kernel and can be solved only numerically. These equation can
be solved using a collocation scheme with an approximation of the unknown functions. For the case of a nonlinear
deformation law for the connections, it is reasonable to determine the stresses qy and qxy at the connections using
an iterative scheme similar to the elastic solution method [8].

To avoid solving the integrodifferential equations, we write Eqs. (9) and (10) as

−1 + k0

2µ

x∫
−l

Q1(x) dx = Cy(x, σ)qy(x), −1 + k0

2µ

x∫
−l

Q2(x) dx = Cx(x, σ)qxy(x). (11)

Here

Q1(x) = − 1
π
√

l2 − x2

[ l∫
−l

√
l2 − t2

t− x
qy(t) dt +

l∫
−l

√
l2 − t2

t− x
σy0(t) dt + 2(c0x + c1)

]
,

Q2(x) = − 1
π
√

l2 − x2

[ l∫
−l

√
l2 − t2

t− x
qxy(t) dt +

l∫
−l

√
l2 − t2

t− x
τxy0(t) dt

]
.

Le us divide the segment (−l, l) by M nodal points tm (m = 1, 2, . . . ,M) and require that conditions (11) be
satisfied at the nodal points. As a result, instead of each of Eqs. (11), we obtain algebraic systems of M1 equations
for the approximate values of qy(tm) and qxy(tm) (m = 1, 2, . . . ,M1), respectively:
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CQ1(t1) = Cy(t1)qy(t1),
C(Q1(t1) + Q1(t2)) = Cy(t2)qy(t2),

. . . . . .

C

M1∑
m=1

Q1(tm) = Cy(tM1)qy(tM1);

(12)

CQ2(t1) = Cx(t1)qxy(t1),
C(Q2(t1) + Q2(t2)) = Cx(t2)qxy(t2),

. . . . . .

C

M1∑
m=1

Q2(tm) = Cx(tM1)qxy(tM1).

(13)

Here C = −1 + k0

2µ

πl

M
and M1 is the number of nodes belonging to the tip zones of the crack.

In obtaining the algebraic systems, all intervals of integration were reduced to one interval [−1, 1], and the
integrals were then replaced by finite sums using quadrature formulas of the type of the Gauss distribution.

In the particular case of linearly elastic connections, systems (12) and (13) are linear and were solved numer-
ically using the Gauss method with a choice of the basic element. After the solution of the algebraic systems (12)
and (13), the stress intensity factors were calculated.

According to the superposition principle, in the case of connections (adhesive forces) in the crack-tip zone,
the stress intensity factors KI and KII are conveniently written as

KI − iKII = (K load
I + Kc

I )− i(K load
II + Kc

II), (14)

where K load
I and K load

II are the stress intensity factors due to the power and thermal loads and Kc
I and Kc

II are the
stress intensity factors due to the stresses arising in the crack-tip zone.

Using well-known formulas [9], for the left tip of the crack we obtain

K load
I = σ0

√
πl +

1√
πl

l∫
−l

σy0(x)

√
l − x

x + l
dx, Kc

I =
1√
πl

l∫
−l

qy(x)

√
l − x

x + l
dx,

K load
II =

1√
πl

l∫
−l

τxy0(x)

√
l − x

x + l
dx, Kc

II =
1√
πl

l∫
−l

qxy(x)

√
l − x

x + l
dx.

(15)

Similarly, for the right tip of the crack we have

K load
I = σ0

√
πl +

1√
πl

l∫
−l

σy0(x)

√
x + l

l − x
dx, Kc

I =
1√
πl

l∫
−l

qy(x)

√
x + l

l − x
dx,

K load
II =

1√
πl

l∫
−l

τxy0(x)

√
x + l

l − x
dx, Kc

II =
1√
πl

l∫
−l

qxy(x)

√
x + l

l − x
dx.

(16)

Le us consider the energy characteristics for the crack with connections between the faces. Irrespective of
the form of the deformation law for the connections, the rate of strain energy release is defined by the relation [2, 9]

Grel = (1− ν)K2
con/(2µ), (17)

where Kcon =
√

K2
I + K2

II is the modulus of the stress intensity factors in the presence of connections in the tip
zone of the crack.
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The rate of consumption of the strain energy by the connections in the tip zone of the crack is given by

Gn =
1
b

∂Un

∂l

(
Un = b

l∫
λk

f(u) dx, f(u) =

v(x)∫
0

qy(v) dv +

u(x)∫
0

qxy(u) du
)
. (18)

Here b is the thickness of the plane, Un is the work of deformation of the connections, and f(u) is the strain energy
density at the connections in the tip zone of the crack.

Using (18) and taking into account that

v+(l)− v−(l) = 0, v+(l)− v−(l) = 0,

we obtain [5]

Gn = b

l∫
l−λk

∂

∂l
(v+ − v−)qy(x) dx + b

l∫
l−λk

∂

∂l
(u+ − u−)qxy(x) dx. (19)

As is known, for the limiting equilibrium state, the following condition is satisfied:

Grel = Glim. (20)

Condition (20) is a necessary but insufficient condition for the limiting equilibrium state of the crack with
the tip zone. Therefore, to determine the limiting-equilibrium state of the crack tip and the tip zone, it is necessary
to introduce an additional critical condition. As such an additional condition, we use the critical crack opening.
We assume that rupture of the connections at the edge of the tip zone (x0 = λk) occurs if the following condition
is satisfied:

V (x0) =
√

v2(x0) + u2(x0) = δk. (21)

Here δk is the limiting stretching (length) of the connections, v = v+−v−, and u = u+−u−. Simultaneous solution
of Eqs. (20) and (21) (for specified crack length and characteristics of the connections) yields the critical external
load and the size of the tip zone dk = l − |λk| for the limiting equilibrium state of the crack tip and the edge
of the tip zone. The rate of consumption of the strain energy Gk(dk, l) obtained from this solution is an energy
characteristic of the crack strength, i.e., Gk = Gn(dk, l).

From the aforesaid, using the limiting values of δk and Gk for the specified sizes of the crack and the tip
zone, it is possible to distinguish the regimes of crack equilibrium and growth under monotonic loading.

If the conditions Grel > Gk and V (x0) < δk are satisfied for the specified size of the tip zone, advance of the
crack tip occurs with a simultaneous increase in the length of the tip zone without rupture of the connections.

This stage of crack propagation can be regarded as a process of adaptation to the specified level of external
loads. Growth of the crack tip with simultaneous rupture of the connections at the edge of the tip zone occurs if the
conditions Grel > Gk and V (x0) > δk are satisfied. Thus, for example, if the inequalities Grel < Gk and V (x0) > δk

are satisfied, the connections are ruptured without advance of the crack tip and the size of the tip zone reduces,
tending to the critical value for the specified load level.

Finally, if the conditions Grel < Gk and V (x0) < δk are satisfied, the position of the crack tip and the tip
zone do not change.

Thus, the analysis shows that values of the external load and the critical parameters δk and Gk determine
the nature of the fracture, namely:

— growth of the crack tip with advance of the tip zone;
— reduction in the size of the tip zone without growth of the crack tip;
— growth of the crack tip with simultaneous rupture of the connections at the edge of the tip zone.
In the case of a nonlinear deformation law for the connections, the stresses in the tip zones are determined

using an iterative algorithm similar to the elastic solution method [8].
It is assumed that the law of deformation of the interparticle connections (adhesive forces) is linear for

V 6 V∗.
The first step of the iterative process consists of solving system (12), (13) for linearly elastic interparticle

connections. Subsequent iterations are performed only if the relation V (x) > V∗ holds on part of the tip zone.
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Fig. 2. Distribution of normal stresses at the connections of the crack-tip zones: curves 1–3 refer to
a linear connection and curves 4–6 refer to a bilinear connection; d/l = 0.15 (4), 0.3 (2 and 5), 0.5
(3 and 6).

Fig. 3. Relative modulus of the stress intensity factors versus the size of the crack-tip zone.

For such iterations, we solve the system of equations in each approximation for quasielastic connections with an
effective compliance which varies along the tip zone of the crack and depends on the stress vector magnitude at
the connections obtained in the previous step of the calculation. The effective compliance is calculated in a similar
manner as the secant modulus in the method of variable elasticity parameters [10]. The process of successive
approximations is terminated when the stresses along the tip zone obtained in two series iterations differ from each
other only slightly.

The nonlinear part of the strain curve for the connections is represented as a bilinear dependence [5] whose
ascending segment corresponds to the elastic deformation of the connections (0 < V (x) 6 V∗) with their maximum
tension. For V (x) > V∗, the deformation law is described by the nonlinear dependence specified by the points
(V∗, σ∗) and (δk, σk). For σk > σ∗, we have an increasing linear dependence (linear strengthening corresponding to
the elastoplastic deformation of the connections).

Thus, the bilinear dependence between the tension of the connection σ(x) and its stretching V (x) is repre-
sented [5] in the form

σ(V ) =
{

V (x)/C(x), 0 6 V (x) 6 V∗,

σk + (σ∗ − σk)(δk − V (x))/(δk − V∗), V∗ < V (x) 6 δk,

where C(x) = Cy(x) = Cx(x) is the effective compliance of the connections at the point with coordinate x in the
tip region. Obviously, if the compliances of the elastic connections vary along the tip zone of the crack, the effective
compliance C(x) is also a variable, which corresponds to variation of the law of deformation of the connections
along the tip zone of the crack.

Figure 2 shows the distribution of normal stresses at the connections in the crack-tip zones for the following
values of the free parameters:

t∗ = 4at/L2
1 = 10, x1/L1 = 0.75, y1/L1 = 0.5, b1/L1 = 0.2;

ν = 0.3, x2/L2 = 0.7, y2/L2 = 0.6, b2/L2 = 0.3, L1 = L2.
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The calculations show that the presence of the temperature stresses induced by the heat source reduces the stress
intensity factors, the stresses at the connections between the faces, and the crack opening. For a linear deformation
law for the connections, the stresses in them always have maximum values at the edge of the tip zone. A similar
picture is observed for the crack opening value; i.e., at the edge of the tip zone, it is maximum for linear and
nonlinear deformation laws, and with increase in the relative compliance of the connections, the crack opening
increases.

Figure 3 gives curves of the relative modulus of the stress intensity factors K0 = Kcon/K load (which can be

treated as a strengthening factor; K load =
√

(K load
I )2 + (K load

II )2 ) versus the size of the crack-tip zone in the plane.
Here the solid curve corresponds to the right tip of the crack, and the dashed curve to the left tip of the crack. The
calculations show that as the relative compliance decreases, the strengthening factor also decreases.

For the case of a crack with connections in the tip zones and temperature stresses induced by heat sources, an
analysis of the limiting equilibrium state of the plane reduces to a parametric study of the solution of the algebraic
systems (12) and (13) for various laws of deformation of the connections, various sizes of the crack-tip regions, and
various thermal and elastic constants of the plane material. The normal and tangential stresses at the connections
and the crack opening are determined directly by solving the resulting algebraic systems in each approximation.
The crack opening in the tip zones can also be determined from relation (1). The stress intensity factors and the
rates of energy release and absorption are calculated from formulas (14)–(16) and (17) and (18), respectively.

Following [11] and other studies, it can be assumed that the forces of interaction of the crack faces (adhesive
forces) are distributed so that the total stress intensity factor, determined as the difference between the stress
intensity factors due to the external and thermal loads and the stress intensity factor due to the adhesive forces
applied to the tip zones, is equal to zero. For this model, the problem is solved using the above computational
scheme but the sizes of the tip zones with connections are not known beforehand and are to be determined. This
is done using the postulate that the singularities in the stress distribution are eliminated, i.e., that the total stress
intensity factor is equal to zero. Thus, the main constitutive equations are supplemented by the condition that the
stresses in the neighborhood of each crack tip are finite.
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